SPICA

2014-12-31 Hiroshi Shibai (PI of SPICA Project)

Presented 2015-1-4 by Matt Bradford COPAG @ AAS Seattle

Telescope diameter: 2 - 3 m

Telescope temperature: < 6 K

Wavelength: 20-210 µm (or wider)

Total mass: < 3.7 t

Orbit: Halo orbit around liberation point S-E L2

Launch: in FT2025 or later by JAXA's H-X

Operation: 3 years (nominal), 5 years (goal)

Suppression of Fore/Background

Continuum Sensitivities

Spectral Line Sensitivities

Spectral Line Sensitivities

Field of Views (Survey Speed)

Far-Infrared Deep Survey of GOODS-S Field by Herschel PACS, 200hrs Integration, False-color Image made with MIPS $24\mu m$, PACS $100\mu m$, $160\mu m$, Magnelli et al. (2013)

Current Status

- Reorganization of the Science Teaming
 - The SPICA team (Japan) & the SAFARI consortium (Europe+) will be unified into a 'New Consortium' to be the proposer both for the ESA's M5 mission and for a JAXA's science mission.
- Reorganization of the Science Program
 - The telescope aperture will be reduced.
 - Major core science cases are, however, able to be kept after this size reduction, by employing a new program for the extragalactic survey.
 - A part of original science goals of SPICA must be affected by the reduction.
- Current Schedule
 - Jan 2015 Science Meeting (Osaka)
 - Mar 2015 End of CDF study
 - Consortium Meeting (Utrecht)
 - Jan 2016 Submission of M5 Proposal to ESA
 - 2015/2016 Several Reviews for Next Project Phases in JAXA

ESA-JAXA Joint Technical Study

Purpose of this Study

 To find Cryogenically Cooled Telescope solution(s) that is(are) technically feasible and financially affordable by JAXA's Science Mission plus by ESA's M-Class

Facility & Period

- Employing ESA's CDF (Concurrent Design Facility) with Inputs of the original SPICA design from JAXA
- Fall 2014 Spring 2015
 (Technical sessions have already finished. Report will come soon)

Condition

- Telescope: 2 m (nominal) or Larger, at < 6 K
- Wavelength: 20 210 μm (nominal) or Wider

Output

The report will be opened to public for M-Class proposers

Role of International Partners in New Framework (To be Changed)

Telescope Assembly (STA)

Focal Plane Instrument Assembly (FPIA)

SPICA Far-IR
Instrument (SAFARI)
Netherlands & European
consortium (13 countries in
total)

SPICA Mid-IR Instrument (SMI)

Bus Module (BM)

Payload Module (PLM)

Mechanical Cryo-cooler System (MCS)

Launching Vehicle

SPICA Data Centre

Science Activities + S.Korea, Taiwan

SPICA Concept as Developed in Japan

- Closed-cycle coolers with 20 K Stirling stages and JT stages at 4.5 K (40 mW EoL) and 1.7 K (³He J-T, 10 mW EoL).
- Heat switches provide some redundancy against failure of a single cooler stage.

SPICA Concept as Developed in Japan

The SMI instrument – design, technical description, capabilities

Hidehiro Kaneda (Nagoya Univ.), the SMI consortium

fined for new SPICA.

SMI

 $20 - 37 \mu m$

FoV: 5'x5'

R = 20

 $20 - 37 \mu m$

(17-20 μm optional)

slit size: 150" x 3"

R = 1000

N/A

under discussion

Cam

Spec

Focused on longer wavelengths and higher mapping efficiency.

11

SAFARI reference design – very well established

- Scanning Fourier Transform Spectrometer with 2'x2' FoV
- Simultaneously observing in 3 bands → 34-210µm
- TES detectors/SQUID read out at 50 mK
- Frequency Domain Multiplexing

SRON

- Dispersive element; slit/grism/FP to reduce background
- To be built by an SRON-led consortium
 - ~15 institutes in Europe, Canada, Japan cost ~170M€

SPICA's true power -

high throughput spectroscopic mapping

31.25 Mpc/h

Field of view:

- SAFARI: yellow box
- PACS: blue dot

SAFARI

- 900 hours for 1°x1° field to $5x10^{-19}$ W/m² (5 σ)
- Full 34-210 μm spectra

...already >>1000 times faster!

PACS

- ~1800 hrs same sensitivity for only a single pointing
- 60-210 μm

13

Summary and Outlook

- ESA's CDF study results are encouraging and leave open a number of avenues towards a SPICA mission that the joint European/ Japanese SPICA team will be investigating in detail.
 - (Not yet available for public release.)
 - Apertures between 2 and 3 meters under consideration.
 - Smaller Planck type mission was the baseline for the CDF study, found to be easily feasible in the M5 cost cap.
 - Study activities may also indicate that larger apertures are also affordable.
- January 12-13: SPICA science team meeting in Osaka to see how the CDF result (primarily mirror size) affects extragalactic science program.
- January mid-March: consortium will develop 2 or 3 mission scenarios (trading mirror size with instrument package) for SPICA.
- March 25-27: SPICA meeting in the Netherlands to decide which of these scenarios is most suitable for Cosmic Visions M5 Proposal.
- Details of instrument payload are still TBD. US participation welcomed if it can strengthen the mission and fit in the allocations.
 - Spectrometers and sensitive detectors a key unique capability.

Technology for SPICA

Silicon Waveguide Spectrometer

Output ports put at Input port discrete frequencies for initial testing purposes Etched grating arc (spectrometer provides w/ 675 facets complete coverage). 6cm Grating in test fixture

Technology for SPICA

Low-NEP detectors enabling background-limited spectroscopy

TES bolometer

Quantum capacitance detector (QCD)

Feedline

Technology for SPICA

Low-NEP detectors enabling background-limited spectroscopy

TES bolometer

Quantum capacitance detector (QCD)

Balloon-borne Precursor (ICarlS / StarFire)

- Wideband spectroscopy of bright dusty galaxies in the far-IR band (shortward of ground-based windows).
 - e.g. C+ from z=0.5 to 1.5,
 - At least 3x more sensitive than Herschel PACS & SPIRE (>10 x faster)
 - Lensed far-IR sources easy.
- Power spectra of C+ in redshift: moments of galaxy luminosity functions.
- D~1.8m telescope (pointed), low (1-4%) emissivity,
- few to ~20 spatial beams, each with a wideband dispersive spectrometer.
- 2000-4000 background-limited detectors (TiN KIDs, lens-coupled)
- James Aguirre [PI], Mark Devlin, Simon Dicker: U. Penn: instrument + telescope + gondola
- Matt Bradford, Steve Hailey-Dunsheath, Chris McKenney: Caltech / JPL: detectors + instrument
- Bade Uzgil, U. Penn + JPL GSRP fellow: power spectrum analysis

Balloon Platform Sensitivity

extras

ESA CDF Study – Considering Planc

40 K

50 K 100 K 150 K

300 K

370 K

Sun, Earth, & Moon

QCD NEP measurement

NEP calculation:

Gate frequency 1 kHz; 2V pp (=1 Cq peak)

Modulation 100Hz; 10% duty cycle

Demodulation by SR830 lock-in; Time constant 1ms =500Hz

bandwidth; looking at X output

Time stream: rate 1000Hz, 200000 samples (200s acquisition)

